41,649 research outputs found

    Determination of water content using mass spectrometry

    Get PDF
    Mass spectrometer is used to measure small quantities of water present in different materials. System has been applied in measuring water and gases desorbed from microcircuitry insulation, can also be used with foods, polymeric materials, and organic solvents

    Dynamic delta method for trace gas analysis

    Get PDF
    Method has been developed in which measurements are made only over viscous flow range, eliminating fractionation before the molecular leak and problems due to surface elution

    Continuous-Time Random Walks at All Times

    Full text link
    Continuous-time random walks (CTRW) play important role in understanding of a wide range of phenomena. However, most theoretical studies of these models concentrate only on stationary-state dynamics. We present a new theoretical approach, based on generalized master equations picture, that allowed us to obtain explicit expressions for Laplace transforms for all dynamic quantities for different CTRW models. This theoretical method leads to the effective description of CTRW at all times. Specific calculations are performed for homogeneous, periodic models and for CTRW with irreversible detachments. The approach to stationary states for CTRW is analyzed. Our results are also used to analyze generalized fluctuations theorem

    Log-periodic modulation in one-dimensional random walks

    Full text link
    We have studied the diffusion of a single particle on a one-dimensional lattice. It is shown that, for a self-similar distribution of hopping rates, the time dependence of the mean-square displacement follows an anomalous power law modulated by logarithmic periodic oscillations. The origin of this modulation is traced to the dependence on the length of the diffusion coefficient. Both the random walk exponent and the period of the modulation are analytically calculated and confirmed by Monte Carlo simulations.Comment: 6 pages, 7 figure

    First passage time for random walks in heterogeneous networks

    Full text link
    The first passage time (FPT) for random walks is a key indicator of how fast information diffuses in a given system. Despite the role of FPT as a fundamental feature in transport phenomena, its behavior, particularly in heterogeneous networks, is not yet fully understood. Here, we study, both analytically and numerically, the scaling behavior of the FPT distribution to a given target node, averaged over all starting nodes. We find that random walks arrive quickly at a local hub, and therefore, the FPT distribution shows a crossover with respect to time from fast decay behavior (induced from the attractive effect to the hub) to slow decay behavior (caused by the exploring of the entire system). Moreover, the mean FPT is independent of the degree of the target node in the case of compact exploration. These theoretical results justify the necessity of using a random jump protocol (empirically used in search engines) and provide guidelines for designing an effective network to make information quickly accessible.Comment: 5 pages, 3 figure

    Exact mean first-passage time on the T-graph

    Full text link
    We consider a simple random walk on the T-fractal and we calculate the exact mean time τg\tau^g to first reach the central node i0i_0. The mean is performed over the set of possible walks from a given origin and over the set of starting points uniformly distributed throughout the sites of the graph, except i0i_0. By means of analytic techniques based on decimation procedures, we find the explicit expression for τg\tau^g as a function of the generation gg and of the volume VV of the underlying fractal. Our results agree with the asymptotic ones already known for diffusion on the T-fractal and, more generally, they are consistent with the standard laws describing diffusion on low-dimensional structures.Comment: 6 page

    Fast scan control for deflection type mass spectrometers

    Get PDF
    A high speed scan device is reported that allows most any scanning sector mass spectrometer to measure preselected gases at a very high sampling rate. The device generates a rapidly changing staircase output which is applied to the accelerator of the spectrometer and it also generates defocusing pulses that are applied to one of the deflecting plates of the spectrometer which when shorted to ground deflects the ion beam away from the collector. A defocusing pulse occurs each time there is a change in the staircase output

    Transport Equations and Spin-Charge Propagating Mode in the Two Dimensional Hole Gas

    Full text link
    We find that the spin-charge motion in a strongly confined two-dimensional hole gas (2DHG) supports a propagating mode of cubic dispersion apart from the diffusive mode due to momentum scattering. Propagating modes seem to be a generic property of systems with spin-orbit coupling. Through a rigorous Keldysh approach, we obtain the transport equations for the 2DHG, we analyze the behavior of the hole spin relaxation time, the diffusion coefficients, and the spin-charge coupled motion

    Comparison of analgesic effects and patient tolerability of nabilone and dihydrocodeine for chronic neuropathic pain: randomised, crossover, double blind study

    Get PDF
    <b>Objective</b>: To compare the analgesic efficacy and side effects of the synthetic cannabinoid nabilone with those of the weak opioid dihydrocodeine for chronic neuropathic pain. <b>Design</b>: Randomised, double blind, crossover trial of 14 weeks’ duration comparing dihydrocodeine and nabilone. <b>Setting</b>: Outpatient units of three hospitals in the United Kingdom. <b>Participants</b>: 96 patients with chronic neuropathic pain, aged 23-84 years. <b>Main outcome measures</b>: The primary outcome was difference between nabilone and dihydrocodeine in pain, as measured by the mean visual analogue score computed over the last 2 weeks of each treatment period. Secondary outcomes were changes in mood, quality of life, sleep, and psychometric function. Side effects were measured by a questionnaire. <b>Intervention</b>: Patients received a maximum daily dose of 240 mg dihydrocodeine or 2 mg nabilone at the end of each escalating treatment period of 6 weeks. Treatment periods were separated by a 2 week washout period. <b>Results</b>: Mean baseline visual analogue score was 69.6 mm (range 29.4-95.2) on a 0-100 mm scale. 73 patients were included in the available case analysis and 64 patients in the per protocol analysis. The mean score was 6.0 mm longer for nabilone than for dihydrocodeine (95% confidence interval 1.4 to 10.5) in the available case analysis and 5.6 mm (10.3 to 0.8) in the per protocol analysis. Side effects were more frequent with nabilone. <b>Conclusion</b>: Dihydrocodeine provided better pain relief than the synthetic cannabinoid nabilone and had slightly fewer side effects, although no major adverse events occurred for either drug

    Memory-induced anomalous dynamics: emergence of diffusion, subdiffusion, and superdiffusion from a single random walk model

    Full text link
    We present a random walk model that exhibits asymptotic subdiffusive, diffusive, and superdiffusive behavior in different parameter regimes. This appears to be the first instance of a single random walk model leading to all three forms of behavior by simply changing parameter values. Furthermore, the model offers the great advantage of analytic tractability. Our model is non-Markovian in that the next jump of the walker is (probabilistically) determined by the history of past jumps. It also has elements of intermittency in that one possibility at each step is that the walker does not move at all. This rich encompassing scenario arising from a single model provides useful insights into the source of different types of asymptotic behavior
    • 

    corecore